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Direct numerical simulation (DNS) of vortex shedding behind a tapered plate with the
taper ratio 20 placed normal to the inflow has been performed. The Reynolds numbers
based on the uniform inflow velocity and the width of the plate at the wide and narrow
ends were 1000 and 250, respectively. For the first time ever cellular vortex shedding
was observed behind a tapered plate in a numerical experiment (DNS). Multiple cells
of constant shedding frequency were found along the span of the plate. This is in
contrast to apparent lack of cellular vortex shedding found in the high-Reynolds-
number experiments by Gaster & Ponsford (Aero. J., vol. 88, 1984, p. 206). However,
the present DNS data is in good qualitative agreement with similar high-Reynolds-
number experimental data produced by Castro & Watson (Exp. Fluids, vol. 37,
2004, p. 159). It was observed that a tapered plate creates longer formation length
coupled with higher base pressure as compared to non-tapered (i.e. uniform) plates.
The three-dimensional recirculation bubble was nearly conical in shape. A significant
base pressure reduction towards the narrow end of the plate, which results in a corres-
ponding increase in Strouhal number, was noticed. This observation is consistent with
the experimental data of Castro & Rogers (Exp. Fluids, vol. 33, 2002, p. 66). Pressure-
driven spanwise secondary motion was observed, both in the front stagnation zone and
also in the wake, thereby reflecting the three-dimensionality induced by the tapering.

1. Introduction
It is a well-known fact that intrinsic three-dimensionalities arise in an initially

two-dimensional flow when secondary instabilities are generated. This is the case
for wakes of two-dimensional bluff bodies above a certain critical Reynolds number
(Najjar & Vanka 1995; Williamson 1996; Najjar & Balachandar 1998). These
three-dimensionalities can induce significant spanwise variations in the velocity and
the pressure fields. In contrast, such three-dimensionalities may also occur due to
extrinsic factors, such as the variation of the body shape (Gaster 1969; Piccirillo &
Van Atta 1993; Vallès, Andersson & Jenssen 2002a, b; Narasimhamurthy, Andersson
& Pettersen in press) or the boundary conditions (Maull & Young 1973; Parnaudeau
et al. 2007). In his famous experimental study on slender cones Gaster (1969)
found that even a small linear variation of the diameter along the span could
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induce complex three-dimensionalities in the wake. Such linear variations of the
local diameter imply a linear variation of the local Reynolds number along the
span. Wakes of two-dimensional bluff bodies are inclined to maintain a surprisingly
constant Strouhal number. On this basis one may envisage two different scenarios
for how the local shedding frequency f will vary with the local diameter. Either
f can vary continuously along the span so that the vortex filament is continuous
and inclined with respect to the axis of the cylinder (the so-called oblique vortex
shedding) or f can be constant only over a finite span so that the vortex filament is
discontinuous (the so-called cellular vortex shedding). In fact, cellular vortex shedding
was reported in both the experiments (Gaster 1969; Piccirillo & Van Atta 1993) and
the computations (Vallès et al. 2002b; Parnaudeau et al. 2007; Narasimhamurthy et al.
in press).

Following the successful findings of vortex dislocations or vortex splits in the wake
of cones, Gaster & Ponsford (1984) went on to investigate the wakes of tapered
and triangular plates at high Reynolds numbers (Re =O(104)) and over a range
of taper ratios (RT = l/(d2 − d1), where l is the length of the plate and d2 and d1

denote the widths at the wide and narrow ends, respectively). They noticed that
the pressure coefficient over the plate sections was not strictly two-dimensional and
they therefore anticipated a weak secondary flow along the front stagnation line to
be the most likely cause of this. In addition, they found a significant base pressure
gradient along the span, driving the secondary flow from the wide end of the plate
towards the narrow end. In spite of the strong three-dimensionalities observed, their
hot-wire measurements failed to show any cellular vortex shedding. They concluded
that the base Strouhal number was constant along the span in all their tapered
models. The constancy of the Strouhal number implies that the shedding frequency
varies inversely with the distance from the narrow end of the plate. In contrast,
Maull & Young (1973) observed cellular shedding in the wake of a uniform (i.e.
parallel-sided) plate with uniform shear as inflow. This motivated Castro & Rogers
(2002) and Castro & Watson (2004) to carry out extensive hot-wire measurements
in the wake of tapered and triangular plates of different taper and aspect ratios
and with different end boundary conditions. The Reynolds numbers were still high
(Re = O(104)). Surprisingly, they found end cells in those cases where the tip of
the triangular plate was lying within the flow domain (free ends) and multiple
cells of constant shedding frequency when the free ends were sealed with an end
plate.

The laboratory experiments on tapered plates by Gaster & Ponsford (1984) and
Castro & Watson (2004) were both at high Reynolds numbers and there is no evidence
that cellular vortex shedding also occurs at low Reynolds numbers. It should be noted
that turbulence at high Reynolds numbers has direct consequences on the vortex
dynamics in the wake. Even though Castro & Rogers (2002) and Castro & Watson
(2004) provided extensive spectral data, the detailed dynamics of the wake has not
been explored so far. An in-depth and comprehensive study of the wake behind
a tapered plate in general and at low Reynolds numbers in particular is therefore
awaited. Direct numerical simulation (DNS) as a tool is the natural choice to explore
such a complex wake structure, as it gives complete access to the instantaneous three-
dimensional data. The above issues will be addressed for the first time in the present
DNS study, where in addition to frequency analysis a more detailed investigation of
the spanwise two-point correlations and the instantaneous vortical structures will be
carried out. The spanwise variations of the velocity and the pressure fields will also
be shown. First, however, results from a three-dimensional simulation of the steady
flow past a tapered plate at very low Reynolds numbers are presented.
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Figure 1. Computational domain (not to scale).

2. Formulation of the problem
Let us consider the flow past a tapered flat plate with the view to explore for the

first time ever the vortex shedding at moderately high Reynolds numbers, i.e. lower
than in the otherwise equivalent laboratory experiments but yet sufficiently high to
make even the near-wake turbulent. The taper ratio is intentionally chosen to match
one of the configurations studied by Castro & Watson (2004), whereas the Reynolds
number is about two orders of magnitude lower than that in their experiment. Due to
the substantial tapering, the local Reynolds number varies from 1000 at the wide end
to 250 at the narrow end of the plate. It is evident from the existing literature that the
first and second instability modes of three-dimensionality in the wake of uniform flat
plates occur already at Re = 105–110 and Re = 125, respectively (Thompson, Leweke
& Williamson 2001; Julien, Lasheras & Chomaz 2003; Julien, Ortiz & Chomaz 2004;
Thompson et al. 2006). Thereby, the Reynolds number chosen in the present study is
well above the transitional regime and the wake flow is expected to be turbulent over
the entire span.

2.1. Flow configuration and numerical method

The computational domain was as shown in figure 1. All spatial dimensions are
normalized by d2 and all velocities are scaled with the uniform inflow velocity Uo. The
mean width of the plate dm was 0.625d2. The thickness of the plate was very small
and equal to 0.02d2. The aspect ratio (AR = l/dm), RT and the Reynolds numbers
Re2, Re1 and Rem, based on the uniform inflow velocity Uo and the widths d2, d1 and
dm, respectively, are given in table 1.
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Case RT AR Re2 Rem Re1

Steady laminar flow 20 24 20 12.5 5
Turbulent flow 20 24 1000 625 250
Castro & Watson (2004) 20 20 – >104 –
Castro & Watson (2004) 20 15.4 – >104 –
Castro & Watson (2004) 20 10 – >104 –
Castro & Watson (2004) 20 5.8 – >104 –
Gaster & Ponsford (1984) 18 – – >104 –

Table 1. Geometrical and flow parameters.

The Navier–Stokes (N-S) equations in incompressible form were solved in three-
dimensional space and time using a parallel finite-volume code called MGLET
(Manhart 2004; Narasimhamurthy et al. 2006). The code uses staggered Cartesian
grid arrangements. Discretization of the spatial derivatives was achieved by means
of a second-order central-differencing scheme. The time marching was carried out
using a third-order explicit Runge–Kutta scheme for the momentum equations in
combination with an iterative SIP (strongly implicit procedure) solver (Ferziger &
Peric 1996) for the Poisson equation. The time step was chosen as �t = 0.001d2/Uo

and the number of Poisson iterations per time step was limited to 30. Parallelization
was implemented using message passing interface (MPI). The computations were
performed on an IBM P575+ parallel computer.

The size of the computational domain in each coordinate direction was Lx =20d2,
Ly =15d2 and Lz =13d2, as shown in figure 1. All three-dimensional simulations
reported in this paper are for the same flow configuration and computational domain.
The number of grid points in each coordinate direction (Nx × Ny × Nz) for the steady
laminar flow case and the turbulent flow case was equal to 160 × 150 × 180 and
320 × 200 × 200, respectively. Non-equidistant grid spacings were used in the X–Z
plane while an equidistant grid was used along the span (Y -direction). The ratio of
grid size �Z near the plate’s wide end to the local width of the plate, �Z/d2, is 0.01.
This implies that the ratio of grid size near the plate’s narrow end to the local width
of the plate, �Z/d1, is 0.04. In order to justify that the present simulation is a fully
resolved DNS, i.e. that all essential turbulent scales are captured, the grid size can
be compared with Kolmogorov’s microscale η = (ν3/ε)1/4. Here, ε is the time-mean
dissipation rate of fluctuating kinetic energy defined as

ε = ν

(
∂ui

∂Xj

∂ui

∂Xj

+
∂ui

∂Xj

∂uj

∂Xi

)
≈ ν

(
∂ui

∂Xj

∂ui

∂Xj

)
, (2.1)

where ui is the fluctuating part of the instantaneous velocity component which
comprises both the unsteady fluctuations and the turbulent fluctuations. The
contribution from the second term in the above definition of the total dissipation rate
ε is negligible (Bradshaw & Perot 1993) and hence neglected in the present analysis.
The grid size relative to the Kolmogorov microscale at some different spanwise
locations at five different downstream positions are given in table 2 and compared
with corresponding data for the plane wake DNS by Moser, Rogers & Ewing (1998)
and the trailing-edge wake DNS of Yao et al. (2001). The data in table 2 show that
the grid size in the present study is of the same order of magnitude as the local
Kolmogorov length scale. The present grid resolution compares favourably with that
used in other wake-flow simulations.
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X/dlocal = 1 3 5 8 12

Present DNS: Relocal =1000 3.84 4.03 4.96 3.44 2.94
Present DNS: Relocal =750 2.18 2.86 4.51 3.82 3.05
Present DNS: Relocal =500 1.31 3.80 4.90 3.68 2.99
Yao et al. (2001) 6.88 5.07 3.42 2.76 2.44
Moser et al. (1998) ≈ 15

Table 2. Grid resolution �X = �X/η values at various X/dlocal positions measured from the
axis of the plate.

Face Boundary condition

Inflow Uo =1; Vo =Wo = 0; ∂P/∂X = 0
Side walls V = 0; ∂U/∂Y = ∂W/∂Y = ∂P/∂Y = 0
Top and bottom walls W = 0; ∂U/∂Z = ∂V/∂Z = ∂P/∂Z =0
Outflow ∂U/∂X = ∂V/∂X = ∂W/∂X =0; P =0

Table 3. Boundary conditions.

φ3
φ2φ1

φ0 Blocked cell
at interface

Interpolated boundary condition

Part of
triangle

Xr Intersection point

X0 X1 X2 X3

Blocked cell

Fluid cell

X

φr

Figure 2. One-dimensional stencil configuration for interpolation in X -direction.

The boundary conditions used are as shown in table 3. A uniform velocity profile
Uo = 1 was prescribed at the inlet without any free-stream perturbations and a
Neumann boundary condition was used for the pressure. A free-slip boundary
condition was applied on both the sidewalls, as well as at the top and bottom
walls (cf. figure 1). At the outlet, a Neumann boundary condition was used for
velocities and the pressure was set to zero.
A direct forcing immersed boundary method (IBM) (Narasimhamurthy et al. 2006;
Peller et al. 2006) was used to transform the no-slip condition at the plate surface
into internal boundary conditions at the nodes of the Cartesian grid (see Iaccarino &
Verzicco 2003 and Mittal & Iaccarino 2005 for extensive reviews of different IBMs).
The solid body (tapered plate) to be immersed in the Cartesian mesh was represented
by a mesh consisting of triangles. The blocking of the Cartesian cells intersected by
these triangles was accomplished as follows:

(i) The intersection points of a triangle surface and the coordinate line passing
through the pressure cell centre were identified. The pressure cells containing those
intersection points were blocked, as shown in figure 2.

(ii) In the second sweep all the pressure cells within the blocked surface were
blocked.

(iii) Finally, all the velocity cells corresponding to blocked pressure cells were
blocked.
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Case Blockage ratio Re =10 Re =20

Present two-dimensional case 0.077 1.12 2.12
Smith (1985) 1.00 2.00
Hudson & Dennis (1985) 1.20 2.32
Ingham et al. (1991) 1.15 2.30
Dennis et al. (1993) 0.00 1.16 2.43
Dennis et al. (1993) 0.05 1.07 –
Dennis et al. (1993) 0.10 1.02 1.98
Dennis et al. (1993) 0.15 0.92 1.76
In et al. (1995) 1.24 2.60
Koumoutsakos & Shiels (1996) – 2.10

Table 4. Non-dimensional length of the steady recirculation zone (Lw/d).

In figure 2, φo is the internal boundary condition value to be determined by
interpolation. Xr is the intersection point between the triangle and the coordinate
line. φr is the value at Xr which is known (the value on the wall). By considering the
neighbouring variables φi (φ1, φ2, φ3, etc.) the stencils are formed. A general stencil
formulation for φo looks like

φo =

( N∑
i=1

αiφi

)
+ αrφr, (2.2)

where N is the number of neighbouring cells involved in the interpolation. The
interpolation coefficients αi and αr depend on the interpolation technique and
geometry only and were therefore computed in a pre-processing step. In the present
DNS study, we used least-squares interpolation of third-order accuracy. The detailed
derivation, validation and implementation of this technique in the code MGLET
were explained in Peller et al. (2006). Using matrix stability analysis they studied
the numerical stability of higher-order Lagrange and least-squares interpolations
and concluded that the least-squares interpolation of third-order is very robust and
numerically stable. The stencil in each direction is one-dimensional. Weighting to
account for three-dimensionality was employed by Tremblay, Manhart & Friedrich
(2001).

2.2. A two-dimensional case: the uniform plate

Before undertaking the three-dimensional numerical simulations, benchmark two-
dimensional calculations of the steady flow past a non-tapered plate placed normal
to the free-stream were carried out. Two different simulations were performed with
Reynolds number Re = Uod/ν based on the uniform width d equal to 20 and 10.
In both the simulations the domain size in X and Z directions was the same as
that in the three-dimensional simulations (see figure 1). The number of grid points
in each direction Nx × Nz were 140 × 100. The non-dimensional length of the steady
recirculation zone (Lw/d) from the present simulations is in good agreement with
the available experimental and numerical data (see table 4). Note the scatter among
the earlier results, with differences of up to 30 % in estimating the length of the
recirculating bubble. Koumoutsakos & Shiels (1996) attributed the differences between
the existing simulations to the treatment of the boundary and far-field conditions.
From their experiments Dennis et al. (1993) reported a strong dependence of the
recirculation zone on the blockage ratio (see table 4). They performed experiments
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Figure 3. Spanwise velocity V/Uo (secondary flow) at three different spanwise locations
identified by the local Reynolds number Relocal = Uo d/ν.

for different blockage ratios and obtained the bubble length for zero blockage by
extrapolation. The substantial increase of Lw/d with decreasing blockage ratio is
indeed noteworthy. It should be noted that small differences in the thickness of the
plate might also have some influence on the steady separation bubble.

3. Results and discussion
3.1. Steady laminar flow

There is no doubt that random turbulence and quasi-organized vortex shedding will
add complexities to the wake of a three-dimensional body. This motivates the need
to first study the wake of a tapered plate in the absence of these two factors. One
may speculate at this stage whether the wake flow behind a tapered plate can be
considered as quasi-two-dimensional provided that the Reynolds number is lower than
the critical value at which vortex shedding occurs. One may furthermore wonder how
the secondary flow field, i.e. the departure from purely two-dimensional behaviour,
will appear. In order to address these issues a steady laminar flow past a tapered
plate was investigated (see table 1 for details). The numerical solution of the unsteady
N-S equations converged to a steady state. The present three-dimensional calculation
revealed a secondary spanwise velocity V , both in the front stagnation zone and in
the wake of the plate (see figure 3). It can be observed from figure 3(a) that in the
front stagnation zone the secondary flow is going from the wide end of the plate
towards the narrow end, surprisingly as speculated by Gaster & Ponsford (1984) in
their high-Reynolds-number study. On the contrary, the secondary motion on the
rear side of the plate is rather complex. The flow in the immediate vicinity of the
plate is going from the wide end towards the narrow end (see figure 3b). The variation
of the base pressure coefficient [Cp = 2(P − P∞)/(ρU 2

o ), where the reference pressure
P∞ is taken from the pressure at the inflow] along the span in figure 4 confirms the
above observation. This is also in perfect agreement with the findings of Gaster &
Ponsford (1984) at higher Reynolds number. The magnitude of this secondary flow is
negligibly small, i.e. less than 0.5 % of the inflow velocity Uo. However, the direction
of the secondary motion is reversed somewhat away from the plate where the flow
goes from the narrow end of the plate towards the wide end. The magnitude of
this spanwise velocity is typically of the order 5 % of the inflow Uo. The secondary
motion in the spanwise direction is a direct consequence of three-dimensionality of



362 V. D. Narasimhamurthy, H. I. Andersson and B. Pettersen

0 0.2 0.4 0.6 0.8 1.0

–1.3

–1.2

–1.1

–1.0

–0.9

–0.8

–0.7

–0.6

–0.5

–0.4
RT = 20 (Present steady flow case)

RT = 20 (Castro & Rogers 2002)

RT = 18 (Gaster & Ponsford 1984)

RT = 36 (Gaster & Ponsford 1984)

Cp

Y/l

Figure 4. Base pressure coefficient variations along the span from the present steady laminar
flow case and the previous experimental results at high Reynolds numbers.

X/d2

Y
/d

2

–0.2

–0.2

–0.2

–0
.4

–0.4
–0.4

0.
2

0.
4

0.
6

0.
6

0.
4

0.
2

0.
2

0.
4

0.
6

2 3 4 5 6 7 8
0

5

10

15

Figure 5. Pressure (P/ρ U 2
o ) contours in the X–Y section plane through the axis of the

plate in the steady laminar flow case. The plate is drawn as a bold line.

the tapered plate and this kind of secondary flow does not arise in the vicinity of a
uniform plate.

The secondary flow is driven by a spanwise pressure gradient. The tapered plate
introduces a variable blockage to the inflow along the span and this gives rise to a
somewhat higher pressure near the wide end of the plate as compared to the narrow
end. The pressure contours (isobars) in figure 5 show that the isobars are inclined
to the stagnation line, thereby giving rise to a spanwise pressure gradient which
drives the flow towards the narrow end. Similarly, the (negative) isobars in the wake
are also tilted from the rear stagnation line, i.e. the lowest pressure is found in the
wake downstream of the widest part of the plate. This observation indicates that the
spanwise-oriented flow in the wake is also pressure-driven. The streamlines in X–Y
plane cutting through the axis of the plate in figure 6 confirm the above observations.
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The constant length Lw of the closed wake behind a uniform plate is known to
increase monotonically with the Reynolds number as long as the flow is in the steady
laminar regime. Both the data from experiments by Dennis et al. (1993) and Ingham,
Tang & Morton (1991) and computations by Hudson & Dennis (1985), In, Choi &
Kim (1995) and others suggest this linear variation of Lw with the Re. In the present
three-dimensional case, the wake length varies substantially along the span of the
tapered plate. The wake behind the wide end is roughly 16 times longer than the wake
behind the narrow end of the plate (see figure 6). If the local wake length Lw is scaled
with the local plate width dlocal , the spanwise variation of Lw/dlocal shown in figure 7
is surprisingly close to the results for uniform or non-tapered (i.e. two-dimensional)
plates. The deviation from two-dimensional behaviour is largest near the wide part
of the tapered plate where the secondary flow is most pronounced (cf. figure 3). The
results from the present simulation compare excellently with the data for uniform
plates in the low-Re regime, i.e. along the narrow half of the plate.

3.2. Turbulent flow

3.2.1. Wake pattern and frequency analysis

The time evolution of the instantaneous velocity components U, V, W and the
instantaneous pressure P was sampled along four lines parallel to the axis of the plate
located 4dm, 8dm, 11dm and 14dm downstream the axis in X -direction, respectively.
All lines were offset by 1dm in Z -direction. It would be inappropriate to present
all the data here because of space constraints. Therefore, only the time trace of the
cross-stream velocity W sampled at 11dm is shown in figure 8. The total sampling
time was equal to 260d2/Uo or 1040d1/Uo, which covers about 35 shedding cycles
at the wide end and about 150 shedding cycles at the narrow end of the plate.
Note that only half of the sampled data (130d2/Uo) is shown in figure 8 for the
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purpose of clarity. The pattern clearly indicates oblique and cellular vortex shedding
with random occurrence of vortex dislocations or vortex splits along the span. It is
easy to see that the vortex dislocations are not occurring periodically in time at the
same spanwise position. This justifies the need for such a long and expensive time
sampling. Some time trace signals of the cross-stream velocity (W ) at some different
spanwise locations are shown in figure 9. Even though the turbulence signatures
are chaotic, a low-frequency modulation, a typical feature of vortex dislocations, is
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visible in certain signals. The signal at Y/d2 = 4 in figure 9, for instance, shows a low-
frequency signature at time tUo/d2 ≈ 17, which corresponds to the vortex dislocation
at Y/d2 ≈ 4 in figure 8. Such low-frequency fluctuations were also observed in the
wake of uniform circular cylinders, first by Roshko (1954) in the transition regime
and later Bloor (1964) suggested that these low-frequency irregularities reflect the
presence of three-dimensionalities that would render the flow turbulent as it travels
downstream. Williamson (1992) attributed these low-frequency irregularities in the
transition regime to the presence of large-scale spot-like vortex dislocations. The
dislocations were found to be generated during the changeover of eddy shedding
mode from laminar to mode A (Williamson 1996). Thereby there exists some firm
evidence that low-frequency signatures can be associated with vortex dislocations even
for parallel-sided bluff bodies. However, this is not always true. The low-frequency
signatures observed by Najjar & Vanka (1995), Najjar & Balachandar (1998) and
Wu et al. (2005) in the wake of uniform flat plates were rather differently interpreted.
While Najjar & Vanka (1995) speculated the low-frequency behaviour to be due to a
low-frequency flapping of the shear layer, Najjar & Balachandar (1998) attributed the
phenomenon to the gradual variation of the flow between two regimes: a regime of
short formation region and a regime of long formation region. They observed that in
the short formation regime the shear layer rolls up closer to the plate to form coherent
spanwise vortices, while in the long formation regime the shear layer extends farther
downstream and the rolled-up Kármán vortices are less coherent. Similar regimes
leading to low-frequency modulations were also noticed at higher Reynolds numbers
by Wu et al. (2005).

To enable quantitative comparisons the frequency spectra were obtained by Fourier
analysis of cross-stream velocity (W ) time traces. A sample spectrum is shown in
figure 10, which is taken at the mid-span of the plate (Relocal =625) and is provided
in a double-logarithmic plot. The primary shedding frequency corresponds to the
most energetic frequency which is found at f d2/Uo = 0.2257. This gives the local
Strouhal number, defined as Stlocal = f dlocal/Uo =0.1411. Shedding frequencies (f )
obtained from the fast Fourier transform of the velocity signals are plotted against
the local widths of the plate in figure 11. Note that the shedding frequency is not



366 V. D. Narasimhamurthy, H. I. Andersson and B. Pettersen

10–2 100 10210–8

10–6

10–4

10–2

100

102

104

f d2/Uo

E
(

f)

Figure 10. Spectrum for the mid-span location Y/d2 = 7.5 (Relocal = 625).

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
1.00

0.85

0.70

0.55

0.40

0.25

d l
oc

al
/d

2

f d2/Uo

Figure 11. Shedding frequencies (f d2/Uo) from Fourier analysis versus dlocal .

varying continuously along the span but in discrete steps between cells of constant
shedding frequency. This is in contrast to what Gaster & Ponsford (1984) found
at high Reynolds numbers, where they reported an almost constant value of base
Strouhal number f d2/Uo along the span. The local Strouhal number Stlocal is plotted
against dlocal in figure 12. It seems like the width of the constant shedding frequency
cells increases with the dlocal , an effect is also observed in the wake of tapered
cylinders (Piccirillo & Van Atta 1993; Narasimhamurthy et al. 2006; Parnaudeau
et al. 2007; Narasimhamurthy et al. in press). The same observation can also be
made from the results of Castro & Watson (2004) in figure 13. Here, the variation of
the Stlocal from the present DNS study is compared against their experimental data.
Note that the taper ratio is the same in both the cases (see table 1). In spite of the
different Reynolds numbers the qualitative agreement is striking. The structure of
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Figure 12. Local Strouhal number Stlocal versus local width of the plate dlocal .
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Figure 13. Local Strouhal number Stlocal from the present DNS calculation plotted against
the hot-wire measurements data by Castro & Watson (2004) along the entire span. Taper ratio
RT = 20 is same in both the cases. Y/l = 0 corresponds to Re2 = 1000 and Y/l = 1 corresponds
to Re1 = 250.

the vortex shedding is strongly dependent on the aspect ratio for low aspect ratios.
The local Strouhal number behaviour deduced from the hot-wire measurements of
Castro & Watson (2004) shows only a minor difference between their aspect ratios,
AR = 15.4 and AR = 20. We are therefore inclined to infer that the impact of the
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aspect ratio difference between the present DNS study (AR = 24) and the Castro &
Watson (2004) data for AR = 20 is negligibly small.

3.2.2. Spanwise two-point correlation

It is clear from the preceding section that cellular vortex shedding exists in the wake
of a tapered plate even at low Reynolds numbers. To further explore this cellular
vortex shedding phenomenon, the spanwise coupling of the vortex motion is studied
by means of spanwise two-point correlation, where the correlation coefficient is
defined as φ(Y )φ(Y + �Y )/φ(Y )2. In statistically homogeneous flows, this correlation
is a function only of the separation �Y between the two points and does not depend
on the position Y . In addition, the correlation is symmetric in the direction of
homogeneity, i.e. independent of the sign of �Y . However, this should not be true
in the present case as the flow is inhomogeneous in all the three directions. This is
indeed what we see in figures 14 and 15. The correlation coefficient of the secondary
flow (V ) is plotted against the spanwise separation �Y at three different positions,
Y/d2 = 5, 7.5 and 10 in figures 14(a), 14(b) and 14(c), respectively. The correlation is
clearly asymmetric and the secondary motion remains surprisingly correlated almost
for the entire span. However, it is interesting to see that the correlation reduces
to ≈ 20 % within �Y = 1d2. The negative correlation towards the narrow end of
the plate implies that the secondary motion is oppositely directed at that position.
This is clearly an end effect as it appears only over 1d2 at the narrow end. The
correlation coefficient is also computed for the cross-stream velocity (W ) component
(see figure 15). This coefficient is again asymmetric. However, it is not surprising that
the correlation goes to zero within �Y = 3d2, since the cross-stream velocity is directly
linked to the spanwise vorticity and the spanwise vortex filaments experience random
vortex dislocations along the span.

3.2.3. Instantaneous vortical structures

In order to identify the topology of the vortex cores correctly the definition of
λ2 by Jeong & Hussain (1995) was used. λ2 corresponds to the second largest
eigenvalue of the symmetric tensor SijSij + Ω ijΩ ij , where Sij and Ω ij are respectively
the symmetric and anti-symmetric parts of the velocity gradient tensor. Iso-surfaces
of negative λ2 and pressure (P/ρ U 2

o ) at the same instant in time are shown in
figures 16 and 17, respectively. The snapshots clearly demonstrate the discontinuity
in the spanwise vortex filament at Y/d2 ≈ 5, 9 and 12.5. As seen in figure 17, the
three-dimensional recirculation bubble is nearly conical in shape. This observation
is consistent with the finding of Gaster & Ponsford (1984) reported from their
high-Reynolds-number experiments. Figures 18(a) and 18(b) show the iso-surfaces of
instantaneous streamwise and cross-stream vorticity components at the same instant
in time. Vortices rotating in opposite directions are distinguished by colour (white
and black). The vortices towards the narrow part of the plate (Y → 15) appear to
be organized but highly irregular in the very near wake and rapidly break up into
incoherent motion downstream. Towards the wider part of the plate (Y → 0) there
is chaos even in the near wake. This is obviously a Reynolds number effect. The
above observation is clearly illustrated in figure 19, where −λ2 at two different
spanwise positions were plotted in the X–Z plane perpendicular to the plate. Note
that the shear layer extends farther downstream of the plate before rolling-up than in
the case of parallel-sided plates (e.g. Najjar & Vanka 1995 and Najjar & Balachandar
1998). This is consistent with the conclusion drawn by Gaster & Ponsford (1984),
where they noticed that tapered plates have longer formation length than their
corresponding uniform plates.
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Figure 14. Spanwise correlation of the secondary flow (V ) at three different positions along
the span corresponding to the Relocal : (a) 750; (b) 625; (c) 500. �Y corresponds to spanwise
separation length.

3.2.4. Mean pressure and base suction coefficients

Time-averaged statistical quantities were evaluated by sampling for 170d2/Uo or
680d1/Uo time units. This sampling period corresponds to about 60 mean shedding
cycles. One sample is taken every tenth time step for averaging.

The mean pressure coefficient is defined as Cp = 2(P − P∞)/(ρU 2
o ), where the

reference pressure P∞ is taken from the pressure at the inflow. The distribution of
Cp on the surface of the tapered plate at different spanwise positions is compared
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Figure 15. Spanwise correlation of the cross-stream (W ) velocity at three different positions
along the span corresponding to the Relocal : (a) 750; (b) 625; (c) 500. �Y corresponds to
spanwise separation length.

against uniform plate results in figure 20. The pressure on the upstream surface of
the tapered plate compares well with the uniform plate experimental data by Fage &
Johansen (1927) and the numerical data by Najjar & Vanka (1995) and Najjar &
Balachandar (1998). It should be noticed that the front face pressures collapse if
plotted versus Z/dlocal rather than Z/d2. The constancy of the pressure in the base
region is well captured in the present DNS study. However, the pressure in the base
region is significantly higher compared to the uniform plate data. The reason for this
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Figure 16. −λ2 vortical structures at time t = 130 d2/Uo showing vortex-dislocations along
the span at Y/d2 ≈ 5, 9, 12.5 (marked by circles). The flow direction is from left to right and
the Y -axis corresponds to the axis of the plate.
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Figure 17. Three-dimensional iso-pressure (P/ρ U 2
o = − 0.07) contours at time t =130 d2/Uo

showing vortex-dislocations along the span at Y/d2 ≈ 5, 9, 12.5. The flow direction is from left
to right and the Y -axis corresponds to the axis of the plate.

lies in the wake formation length, which is closely coupled to the local base pressure.
As discussed already in the previous section, Gaster & Ponsford (1984) reported very
strong and periodic vortex shedding behind the uniform plates, which gives rise to
significantly shorter formation lengths compared to tapered plates. Najjar & Vanka
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Figure 18. Three-dimensional iso-surfaces at the same time instant, t = 130 d2/Uo.
(a) Streamwise vorticity, ωx . (b) Cross-stream vorticity, ωz. The flow direction is from left
to right and the Y -axis corresponds to the axis of the plate. The surfaces coloured white and
black mark ων/U 2

o = − 0.002 and ων/U 2
o = + 0.002, respectively.

(1995) noted that the wake formation length in their uniform plate case at Re = 1000
was about two plate widths. The mean wake formation length in the present case
in figure 21 clearly shows that at Relocal =1000 the bubble is six times the local
plate width, i.e. three times larger than in the corresponding uniform plate case. This
suggests a coupling between the local base pressure and the vortex formation process
(Bearman 1965, 1967).
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Figure 19. Contour plots of −λ2 at two different spanwise positions: (a) Y/d2 = 12;
(b) Y/d2 = 2.

The mean base pressure coefficient along the span of the plate is shown in figure 22.
Even though Gaster & Ponsford (1984) observed base pressure variations for all their
tapered models with a significant reduction towards the narrow end of the plate,
they did not give any explanation to this phenomenon. They noticed, however, that
this base pressure gradient was driving the secondary flow from the wide end of the
plate towards the narrow end. Castro & Rogers (2002) made a similar observation
in their experiments and they attributed this reduction in base pressure towards the
narrow end to the corresponding increase in Strouhal number. By comparing the
Cp variations in figure 22 to the Stlocal variation in figure 13, the present DNS data
confirms the conclusion given by Castro & Rogers (2002).

3.2.5. Secondary motion

The pressure-driven secondary motion in the steady laminar flow regime has been
discussed in § 3.1. There is also some evidence in experiments (Gaster & Ponsford
1984; Castro & Rogers 2002) that such pressure-driven secondary flow may exist even
at high Reynolds numbers, i.e. in the turbulent flow regime. This issue has not yet
been thoroughly addressed. The present turbulent flow simulation revealed a mean
spanwise velocity V , both in the front stagnation zone and also in the wake of the
plate (see figure 23). It can be observed from figure 23(a) that in the front stagnation
zone the secondary flow is still going from the wide end of the plate towards the
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Figure 21. Non-dimensional length of the mean recirculation zone versus Relocal . Lw is the
streamwise distance from the axis of the plate to the position where the mean streamwise
velocity U changes sign from negative to positive.

narrow end, similar to what we saw in the steady laminar regime (cf. figure 3a) and
also as speculated by Gaster & Ponsford (1984). The magnitude of this spanwise
velocity is around 10 % of the inflow Uo, i.e. twice larger than what we observed in
the steady laminar regime. On the contrary, the secondary motion on the rear side
of the plate in figure 23(b) is more complex and similar to what we observed in
the steady laminar wake (see figure 3b). The flow in the near vicinity of the plate
is going from the wide end towards the narrow end. This is in perfect agreement to
what Gaster & Ponsford (1984) claimed in their experimental study. However, the
direction of this secondary motion is surprisingly reversed somewhat away from the
plate, so that the flow goes from the narrow end of the plate towards the wide end.
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The magnitude of this spanwise velocity is around 20 % of the inflow Uo, i.e. about
four times larger than what was observed in the steady laminar regime (cf. figure 3b).
The secondary motion discussed above is driven by local pressure gradients. Mean
pressure profiles at different spanwise locations in figure 24(a) and the isobars in
figure 24(b) justify the above claim. The streamlines in X–Y plane through the axis
of the plate in figure 25 confirm the above observations. The streamlines within
the separation bubble are distinctly different from those in the steady laminar case
(figure 6). The shape of the −0.4 mean–pressure contour in figure 24(b) resembles the
topology of the instantaneous iso-pressure surface in figure 17.

4. Conclusions
For the first time ever cellular vortex shedding has been observed behind a tapered

plate in a numerical experiment (DNS). Frequency analysis, two-point correlations and
three-dimensional visualizations collectively confirm that multiple cells of constant
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Figure 25. Streamlines in the X–Y section plane through the axis of the plate illustrating
the mean secondary flow (V ) direction and the mean recirculation zone.

shedding frequency exist along the span of the plate. This is in contrast to apparent
lack of cellular vortex shedding found in the high-Reynolds-number experiments by
Gaster & Ponsford (1984). However, the present DNS data is in good qualitative
agreement with similar high-Reynolds-number experimental data produced by
Castro & Rogers (2002) and Castro & Watson (2004). A possible reason for the
failure of Gaster & Ponsford (1984) experiments to show cellular vortex shedding was
suggested by Castro & Rogers (2002). They argued that tracking of the variation in
shedding frequency across the span certainly requires closely spaced measurements,
whereas only a modest number of spectral measurements were made by Gaster &
Ponsford (1984).

In the present DNS study, it has been observed that tapering tends to decorrelate
the vortex shedding both in time and also along the span. The decorrelated vortex
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shedding results in a longer formation length of the separation bubble and higher
base pressure as compared to the non-tapered (i.e. uniform) plates. This is consistent
with the conclusion drawn by Gaster & Ponsford (1984). Base pressure variations
were noted in the present tapered configuration with a significant reduction towards
the narrow end of the plate. This reduction in base pressure towards the narrow end
results in a corresponding increase in Strouhal number. This observation is consistent
with the findings of Castro & Watson (2004).

The three-dimensional recirculation bubble was found to be nearly conical in shape
in both the steady laminar case and the turbulent flow case. This observation is
similar to what Gaster & Ponsford (1984) reported in their high-Reynolds-number
experiment. In addition it was observed that the length of the closed wake in the
steady laminar case is in good agreement with non-tapered (i.e. uniform) plate data.
Thus the flow field in planes perpendicular to the plate axis can be considered as
quasi-two-dimensional in the steady laminar flow regime.

The present three-dimensional calculations revealed a pressure-driven spanwise
secondary motion, both in the steady laminar flow regime and also in the turbulent
flow regime. It was observed that in the front stagnation zone the secondary flow is
going from the wide end of the plate towards the narrow end. This is in accordance
with the speculations by Gaster & Ponsford (1984) in their high-Reynolds-number
study. On the contrary, the secondary flow pattern on the rear side of the plate is
rather complex. The flow in the immediate vicinity of the plate is going from the wide
end towards the narrow end. This is in perfect agreement to what Gaster & Ponsford
(1984) claimed. However, the direction of this secondary motion is surprisingly
reversed somewhat away from the plate, so that the flow goes from the narrow
end of the plate towards the wide end. The spanwise secondary motion was found to
be more pronounced in the turbulent flow case than in the steady laminar case.

The present computer simulations of flow past a linearly tapered plate facilitated
detailed study of three-dimensional wake flow phenomena in the laminar and
low-Reynolds-number turbulent flow regime, which thereby supplement earlier
experimental investigations at substantially higher Reynolds numbers. Similarities
and differences between the two distinctly different cases herein and the earlier high-
Re studies are pointed out. The cellular shedding observed at relatively low Re in the
present study supports and complements the findings of Castro & Watson (2004) at
a significantly higher Reynolds number.
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